<output id="nljzv"></output>
<i id="nljzv"></i>
<ruby id="nljzv"><meter id="nljzv"><acronym id="nljzv"></acronym></meter></ruby>
<wbr id="nljzv"><table id="nljzv"><p id="nljzv"></p></table></wbr>
  • <sub id="nljzv"><tr id="nljzv"></tr></sub>

    <sub id="nljzv"><pre id="nljzv"></pre></sub>

      <wbr id="nljzv"><table id="nljzv"></table></wbr>

    <source id="nljzv"></source>
  • <acronym id="nljzv"><bdo id="nljzv"></bdo></acronym>
    <i id="nljzv"><bdo id="nljzv"></bdo></i>

  • Image Modal
    中考網
    全國站
    快捷導航 中考政策指南 2024熱門中考資訊 中考成績查詢 歷年中考分數線 中考志愿填報 各地中考大事記 中考真題及答案大全 歷年中考作文大全 返回首頁
    您現在的位置:中考 > 初中數學 > 幾何輔導 > 正文

    初中數學三角形、四邊形、圓輔助線的添加方法,幫你輕松拿下壓軸

    來源:網絡資源 作者:中考網整理 2019-08-20 11:14:21

    中考真題

    免費領資料
      01
     
      三角形中常見輔助線的添加
     
      1. 與角平分線有關的
     
      (1) 可向兩邊作垂線。
     
      (2)可作平行線,構造等腰三角形
     
     。3)在角的兩邊截取相等的線段,構造全等三角形
     
      2. 與線段長度相關的
     
     。1)截長:證明某兩條線段的和或差等于第三條線段時,經常在較長的線段上截取一段,使得它和其中的一條相等,再利用全等或相似證明余下的等于另一條線段即可
     
     。2)補短:證明某兩條線段的和或差等于第三條線段時,也可以在較短的線段上延長一段,使得延長的部分等于另外一條較短的線段,再利用全等或相似證明延長后的線段等于那一條長線段即可
     
     。3)倍長中線:題目中如果出現了三角形的中線,方法是將中線延長一倍,再將端點連結,便可得到全等三角形。
     
      (4)遇到中點,考慮中位線或等腰等邊中的三線合一。
     
      3. 與等腰等邊三角形相關的
     
     。1)考慮三線合一
     
     。2)旋轉一定的度數,構造全都三角形,等腰一般旋轉頂角的度數,等邊旋轉60 °
     
      02
     
      四邊形中常見輔助線的添加
     
      特殊四邊形主要包括平行四邊形、矩形、菱形、正方形和梯形。在解決一些和四邊形有關的問題時往往需要添加輔助線。下面介紹一些輔助線的添加方法。
     
      1. 和平行四邊形有關的輔助線作法
     
      平行四邊形是最常見的特殊四邊形之一,它有許多可以利用性質,為了利用這些性質往往需要添加輔助線構造平行四邊形。
     
      (1) 利用一組對邊平行且相等構造平行四邊形
     
     。2)利用兩組對邊平行構造平行四邊形
     
     。3)利用對角線互相平分構造平行四邊形
     
      2. 與矩形有輔助線作法
     
     。1)計算型題,一般通過作輔助線構造直角三角形借助勾股定理解決問題。
     
     。2)證明或探索題,一般連結矩形的對角線借助對角線相等這一性質解決問題。和矩形有關的試題的輔助線的作法較少。
     
      3. 和菱形有關的輔助線的作法
     
      和菱形有關的輔助線的作法主要是連接菱形的對角線,借助菱形的判定定理或性質定定理解決問題。
     
     。1)作菱形的高
     
      (2)連結菱形的對角線
     
      4. 與正方形有關輔助線的作法
     
      正方形是一種完美的幾何圖形,它既是軸對稱圖形,又是中心對稱圖形,有關正方形的試題較多。解決正方形的問題有時需要作輔助線,作正方形對角線是解決正方形問題的常用輔助線。
     
      5. 與梯形有關的輔助線的作法
     
      和梯形有關的輔助線的作法是較多的.主要涉及以下幾種類型:
     
     。1)作一腰的平行線構造平行四邊形和特殊三角形
     
      (2)作梯形的高,構造矩形和直角三角形
     
     。3)作一對角線的平行線,構造直角三角形和平行四邊形
     
      (4)延長兩腰構成三角形
     
     。5)作兩腰的平行線等
     
      03
     
      圓中常見輔助線的添加
     
      1. 遇到弦時(解決有關弦的問題時)
     
      常常添加弦心距,或者作垂直于弦的半徑(或直徑)或再連結過弦的端點的半徑。
     
      作用:
     
     、  利用垂徑定理
     
      ②  利用圓心角及其所對的弧、弦和弦心距之間的關系
     
     、  利用弦的一半、弦心距和半徑組成直角三角形,根據勾股定理求有關量
     
      2. 遇到有直徑時
     
      常常添加(畫)直徑所對的圓周角
     
      作用:利用圓周角的性質得到直角或直角三角形
     
      3. 遇到90度的圓周角時
     
      常常連結兩條弦沒有公共點的另一端點
     
      作用:利用圓周角的性質,可得到直徑
     
      4. 遇到弦時
     
      常常連結圓心和弦的兩個端點,構成等腰三角形,還可連結圓周上一點和弦的兩個端點
     
      作用:
     
      ①可得等腰三角形
     
     、趽䦂A周角的性質可得相等的圓周角
     
      5. 遇到有切線時
     
      常常添加過切點的半徑(連結圓心和切點)
     
      作用:利用切線的性質定理可得OA⊥AB,得到直角或直角三角形
     
      常常添加連結圓上一點和切點
     
      作用:可構成弦切角,從而利用弦切角定理。
     
      6. 遇到證明某一直線是圓的切線時
     
     。1) 若直線和圓的公共點還未確定,則常過圓心作直線的垂線段。
     
      作用:若OA=r,則l為切線
     
      (2) 若直線過圓上的某一點,則連結這點和圓心(即作半徑)
     
      作用:只需證OA⊥l,則l為切線
     
     。3) 有遇到圓上或圓外一點作圓的切線
     
      7. 遇到兩相交切線時(切線長)
     
      常常連結切點和圓心、連結圓心和圓外的一點、連結兩切點
     
      作用:據切線長及其它性質,可得到
     
      ①  角、線段的等量關系
     
     、  垂直關系
     
     、  全等、相似三角形
     
      8. 遇到三角形的內切圓時
     
      連結內心到各三角形頂點,或過內心作三角形各邊的垂線段
     
      作用:利用內心的性質,可得
     
     、 內心到三角形三個頂點的連線是三角形的角平分線
     
      ② 內心到三角形三條邊的距離相等
     
      9. 遇到三角形的外接圓時
     
      連結外心和各頂點
     
      作用:外心到三角形各頂點的距離相等
     
      10. 遇到兩圓外離時
     
      (解決有關兩圓的外、內公切線的問題)常常作出過切點的半徑、連心線、平移公切線,或平移連心線
     
      作用:
     
      ①利用切線的性質;
     
     、诶媒庵苯侨切蔚挠嘘P知識
     
      11. 遇到兩圓相交時
     
      常常作公共弦、兩圓連心線、連結交點和圓心等
     
      作用:
     
      ①利用連心線的性質、解直角三角形有關知識
     
      ②  利用圓內接四邊形的性質
     
      ③  利用兩圓公共的圓周的性質
     
     、 垂徑定理
     
      12. 遇到兩圓相切時
     
      常常作連心線、公切線
     
      作用:
     
      ①利用連心線性質
     
      ②切線性質等
     
      13. 遇到三個圓兩兩外切時
     
      常常作每兩個圓的連心線
     
      作用:可利用連心線性質
     
      14. 遇到四邊形對角互補或兩個三角形同底并在底的同向且有相等“頂角”時
     
      常常添加輔助圓
     
      作用:以便利用圓的性質
     
    新初三快掃碼關注
     
    中考網微信公眾號
     
    每日推送學習技巧,學科知識點
     
    助你迎接2020年中考!
     
     

       歡迎使用手機、平板等移動設備訪問中考網,2025中考一路陪伴同行!>>點擊查看

    • 歡迎掃描二維碼
      關注中考網微信
      ID:zhongkao_com

    • 歡迎掃描二維碼
      關注高考網微信
      ID:www_gaokao_com

    • 歡迎微信掃碼
      關注初三學習社
      中考網官方服務號

    熱點專題

    • 2024年全國各省市中考作文題目匯總
    • 2024中考真題答案專題
    • 2024中考查分時間專題

    [2024中考]2024中考分數線專題

    [2024中考]2024中考逐夢前行 未來可期!

    中考報考

    中考報名時間

    中考查分時間

    中考志愿填報

    各省分數線

    中考體育考試

    中考中招考試

    中考備考

    中考答題技巧

    中考考前心理

    中考考前飲食

    中考家長必讀

    中考提分策略

    重點高中

    北京重點中學

    上海重點中學

    廣州重點中學

    深圳重點中學

    天津重點中學

    成都重點中學

    試題資料

    中考壓軸題

    中考模擬題

    各科練習題

    單元測試題

    初中期中試題

    初中期末試題

    中考大事記

    北京中考大事記

    天津中考大事記

    重慶中考大事記

    西安中考大事記

    沈陽中考大事記

    濟南中考大事記

    知識點

    初中數學知識點

    初中物理知識點

    初中化學知識點

    初中英語知識點

    初中語文知識點

    中考滿分作文

    初中資源

    初中語文

    初中數學

    初中英語

    初中物理

    初中化學

    中學百科

    精品人妻无码AⅤ一区二区_亚洲国产天堂一区二区在线观看_欧美日韩国产VA在线观看免费_综合 欧美 亚洲日本
    <output id="nljzv"></output>
    <i id="nljzv"></i>
    <ruby id="nljzv"><meter id="nljzv"><acronym id="nljzv"></acronym></meter></ruby>
    <wbr id="nljzv"><table id="nljzv"><p id="nljzv"></p></table></wbr>
  • <sub id="nljzv"><tr id="nljzv"></tr></sub>

    <sub id="nljzv"><pre id="nljzv"></pre></sub>

      <wbr id="nljzv"><table id="nljzv"></table></wbr>

    <source id="nljzv"></source>
  • <acronym id="nljzv"><bdo id="nljzv"></bdo></acronym>
    <i id="nljzv"><bdo id="nljzv"></bdo></i>

  • 亚洲一区精品中文字幕 | 亚州十八禁免费不卡在线视颖 | 在线观看黄aⅴ免费观看 | 亚洲国产精品一区二区三区 | 亚洲综合色区中文字幕 | 亚洲精品揄拍自拍第一页 |